A Demonstration of Using $\operatorname{AT} T_{E} X$ with R

Florian Heiss
March 30, 2017

Our data set has 141 observations. The distribution of gender is the following:

	gender
female	67
male	74

Table 1 shows the regression results.

Table 1: Regression Results

	Dependent variable:		
	colGPA		
	(1)	(2)	(3)
hsGPA	$0.482^{* * *}$		$0.453^{* * *}$
	(0.090)		(0.096)
ACT		$0.027^{* *}$	0.009
		(0.011)	(0.011)
Constant	$1.415^{* * *}$	$2.403^{* * *}$	$1.286^{* * *}$
	(0.307)	(0.264)	(0.341)
Observations	141	141	141
R^{2}	0.172	0.043	0.176
Note:	${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$		

In model (1), $\hat{\beta}_{1}=0.482$. Finally, here is our regression graph:

